

Relative reproductive success of hatchery- versus natural-origin salmon in Canadian integrated populations

There are risks associated with hatchery enhancement: differences between a hatchery and a natural habitat affect both the genetic and environmental factors that shape the performance and fitness of salmon. The relative fitness of hatchery-origin compared to natural-origin salmon has been estimated in a handful of systems through determination of Relative Reproductive Success (RRS). In these studies, returning adults are assigned back to their parents using genetic tags called parentage-based tags, and RRS is inferred by the number of returns per family from hatchery-origin compared to natural-origin parents.

In general, the results of RRS studies suggest that hatchery-origin fish have lower natural reproductive success than natural-origin fish, and this reduced RRS is potentially transferred across generations. The extent to which hatchery-origin fitness is lower than natural-origin fitness is likely dependent on current and historical factors impacting specific systems, including hatchery practices.

The objectives of the study are:

- 1) Initiate genetic sampling of both the escapement and broodstock for at least one population enhanced by the Salmonid Enhancement Program (SEP).
- 2) Use a genetic biomarker panel to genotype

Take-aways

- Salmon bred from a hatchery are often less fit in wild environments than naturally-bred salmon.
- However, this situation can change using different hatchery methods.
- This genetic study compares DNA samples from returning hatchery Chinook to natural Chinook in Sarita River to see if hatchery methods impact the spawning success of hatchery Chinook.

these natural-origin and hatchery-origin parents.

3) Explore alternative approaches to enable widespread RRS estimation across SEP hatcheries even in systems where extensively escapement sampling is infeasible.

Timeline

- ✓ Nov 2023: DNA samples collected from 900 potential natural-origin spawners
- ✓ Apr 2024: DNA samples collected from outmigrating smolts
- ⌚ to Mar 2025: Single-nucleotide polymorphism (SNP) genotype database of natural-origin spawners for future analyses on outmigrating smolts or returning adults.

DFO Science Division
Aquatic Diagnostics, Genomics and Technology

DFO Science Section
Molecular Genetics

Project Leads
Eric Rondeau
Tim Healy
Kyle Wellband

Locations
Sarita River
Nitinat Hatchery

Species
Chinook

Project ID
2451